Type Here to Get Search Results !

Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.1 (English + Hindi) NCERT Solutions

Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.1 (English + Hindi) NCERT Solutions


Table Of Content
  • Ex.8.1
  • Ex.8.2
  • Ex.8.3
  • Ex.8.4
  • Introduction to Trigonometry Class 10 Important Questions
  • Introduction to Trigonometry Class 10 Notes


Ex.8.1

Ex 8.1 Maths Question 1.
In ∆ABC right angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) sin A, cos A
(ii) sin C, cos C
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.1 Q1

Ex 8.1 Class 10 Maths Question 2.
In given figure, find tan P – cot R.
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.1 PDF Download Q2

You can also download the free PDF of Chapter 8 Ex 8.1 Introduction to Trigonometry NCERT Solutions or save the solution images and take the print out to keep it handy for your exam preparation.

Download NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry PDF

Ex 8.1 Class 10 Maths Question 3.
If sin A = 34 , calculate cos A and tan A.
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.1 PDF Q3

Ex 8.1 Class 10 Maths Question 4.
Given 15 cot A = 8, find sin A and sec A.
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.1 Free PDF Download Q4

Ex 8.1 Class 10 Maths Question 5.
Given sec θ = 1312 , calculate all other trigonometric ratios.
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.1 Q5

Ex 8.1 Class 10 Maths Question 6.
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
Solution:
Exercise 8.1 Class 10 NCERT Solutions Chapter 8 Trigonometry Q6

Ex 8.1 Class 10 Maths Question 7.
If cot θ = 78, evaluate:
(i) (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)
(ii) cot²θ
Solution:
Exercise 8.1 Class 10 NCERT Solutions Chapter 8 Trigonometry Free PDF Download Q7

Ex 8.1 Class 10 Maths Question 8.
If 3 cot A = 4, check whether 1tan2A1+tan2A = cos² A – sin² A or not.
Solution:
Exercise 8.1 Class 10 NCERT Solutions Chapter 8 Trigonometry Free PDF Download Q7

Ex 8.1 Class 10 Maths Question 9.
In triangle ABC, right angled at B, if tan A = 13, find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
Solution:
Trigonometry Class 10 Chapter 8 Exercise 8.1 NCERT Solutions Free PDF Download Q9
Trigonometry Class 10 Chapter 8 Exercise 8.1 NCERT Solutions PDF Q9.1

Ex 8.1 Class 10 Maths Question 10.
In ΔPQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
Solution:
Trigonometry Class 10 Chapter 8 Exercise 8.1 NCERT Solutions Q10

Ex 8.1 Class 10 Maths Question 11.
State whether the following statements are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A = 125 for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin θ = 43 for some angle.
Solution:
Trigonometry Class 10 Chapter 8 Exercise 8.1 NCERT Solutions PDF Download Q11

Class 10 Maths Introduction To Trigonometry

Trigonometry

Trigonometry is the study of relationships between the sides and angles of a right-angled triangle.

Trigonometric Ratios

Trigonometric ratios of an acute angle in a right triangle express the relationship between the angle and the length of its sides.
Let ∆ABC be a triangle right angled at B. Then the trigonometric ratios of the angle A in right ∆ABC are defined as follows:
NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.1 Q11

NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.1 Q11.1

Note:
The values of the trigonometric ratios of an angle do not vary with the lengths of the sides of the triangle, if the angle remains same.
NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.1 Q11.2

Trigonometric Ratios for Complementary Angles

sin (90° – A) = cos A
cos (90° – A) = sin A
tan (90° – A) = cot A
cot (90° – A) = tan A
sec (90° – A) = cosec A
cosec (90° – A) = sec A
Note:
Here (90° – A) is the complementary angle of A.

Trigonometric Identities

An equation involving trigonometric ratios of an angle is called a trigonometric identity, if it is true for all values of the angle(s) involved.
(i) sin2θ + cos2θ = 1 [for 0° ≤ θ ≤ 90°]
(ii) sec2θ – tan2θ = 1 [for 0° ≤ θ ≤ 90°]
(iii) cosec2θ – cot2θ = 1 [for 0° < θ ≤ 90°]

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Hindi Medium) Ex 8.1

NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.1 Introduction to Trigonometry in ENGLISH MEDIUM
10 maths ex. 8.1
8.1 class 10 maths
trigo 8.1 class 10
class 10 maths trigo ex. 8.1 sols
class 10 maths exercise 8.1 in english
10 maths exercise 8.1 of trigonometry
class 10 chapter 8 ex. 8.1



Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.2

Ex 8.2 Class 10 Maths Question 1.

Evaluate the following:
NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.2 Q1
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.2 Free PDF Download Q1
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.2 PDF Download Q1.1

Ex 8.2 Class 10 Maths Question 2.
Choose the correct option and justify your choice:
NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.2 Q2
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.2 Q2

Download NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry PDF

Ex 8.2 Class 10 Maths Question 3.
If tan (A + B) = √3 and tan (A – B) = 13; 0° < A + B ≤ 90°; A > B, find A and B.
Solution:
Exercise 8.2 Class 10 NCERT Solutions Chapter 8 Trigonometry PDF Download Q3

Ex 8.2 Class 10 Maths Question 4.
State whether the following statements are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B.
(ii) The value of sin θ increases as θ increases.
(iii) The value of cos θ increases as θ increases.
(iv) sin θ = cos θ for all values of θ.
(v) cot A is not defined for A = 0°.
Solution:
Trigonometry Class 10 Chapter 8 Exercise 8.2 NCERT Solutions Q4

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Hindi Medium) Ex 8.2

NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.2 Introduction to Trigonometry
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.2 in English medium
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.2 Introduction to Trigonometry in English PDF
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.2 Introduction to Trigonometry free download
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.2 Introduction to Trigonometry in Hindi medium
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.2 in Hindi PDF
Class 10 Maths chapter 8 exercise 8.2 in Hindi medium
class 10 maths exercise 8.2 in english
class 10 chapter 8 ex. 8.2
class 10 maths trigo ex. 8.2 sols
ex. 8.2 trigo class 10



Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.3

Ex 8.3 Class 10 Maths Question 1.

Evaluate:
NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.3 Q1
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.3 Free PDF Download

Ex 8.3 Class 10 Maths Question 2.
Show that:
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.3 Free PDF Q2

Ex 8.3 Class 10 Maths Question 3.

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.3 Q3

Ex 8.3 Class 10 Maths Question 4.
If tan A = cot B, prove that A + B = 90°.
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.3 PDF Q4

Ex 8.3 Class 10 Maths Question 5.
If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Solution:
Exercise 8.3 Class 10 NCERT Solutions Chapter 8 Trigonometry PDF Download Q5

Ex 8.3 Class 10 Maths Question 6.
If A, B and C are interior angles of a triangle ABC, then show that: sin (B+C2) = cos A2
Solution:
Exercise 8.3 Class 10 NCERT Solutions Chapter 8 Trigonometry PDF Q6

Ex 8.3 Class 10 Maths Question 7.
Express sin 61° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Solution:
Trigonometry Class 10 Chapter 8 Exercise 8.3 NCERT Solutions Q7

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Hindi Medium) Ex 8.3

NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.3 Introduction to Trigonometry
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.3 in Hindi Medium
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.3 questions 1, 2, 3, 4, 5
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.3 in PDF questions 6 and 7
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.3 in Hindi PDF
Class 10 Maths chapter 8 exercise 8.3 in Hindi medium



Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4 are part of NCERT Solutions for Class 10 Maths. Here we have given NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Exercise 8.4

Ex 8.4 Class 10 Maths Question 1.

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.Solution:

NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.4 Free PDF Download Q1

Ex 8.4 Class 10 Maths Question 2.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.4 Q2

Ex 8.4 Class 10 Maths Question 3.

Evaluate:
NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4 Q3
Solution:
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.4 Free PDF Q3

Ex 8.4 Class 10 Maths Question 4.
Choose the correct option. Justify your choice.
(i) 9 sec² A – 9 tan² A = ……
(A) 1
(B) 9
(C) 8
(D) 0

(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) = ………..
(A) 0
(B) 1
(C) 2
(D) -1

(iii) (sec A + tan A) (1 – sin A) = ………….
(A) sec A
(B) sin A
(C) cosec A
(D) cos A

(iv) 1+tan2A1+cot2A = ………..
(A) sec² A
(B) -1
(C) cot² A
(D) tan² A
Solution:
Exercise 8.4 Class 10 NCERT Solutions Chapter 8 Trigonometry PDF Download Q4

Ex 8.4 Class 10 Maths Question 5.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
NCERT Solutions For Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4 Q5
Solution:
Exercise 8.4 Class 10 NCERT Solutions Chapter 8 Trigonometry Free PDF Download Q4
Trigonometry Class 10 Chapter 8 Exercise 8.4 Free PDF Download Q5.1
Trigonometry Class 10 Chapter 8 Exercise 8.4 NCERT Solutions Q5.2
Exercise 8.4 Class 10 NCERT Solutions Chapter 8 Trigonometry Q5.3
Exercise 8.4 Class 10 NCERT Solutions Chapter 8 Trigonometry PDF Q5.4
NCERT Solutions for Class 10 Maths Chapter 8 Trigonometry Exercise 8.4 Q5.6
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 Q5.7

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Hindi Medium) Ex 8.4

NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.4
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.4 Question 1 and 2
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.4 Question 3 and 4
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.4 Question 5
NCERT Solutions for class 10 Maths Chapter 8 Exercise 8.4 Question 5 in English Medium
Class 10 Maths Chapter 8 Exercise 8.4 Question 5 Proofs
Class 10 Maths Chapter 8 Exercise 8.4 Question 5 Solutions in English PDF
10 Maths Chapter 8 Exercise 8.4 Trigonometric Identities proofs
Class 10 Maths Chapter 8 Exercise 8.4 Question 1 and 2 in Hindi Medium
Class 10 Maths Chapter 8 Exercise 8.4 Trigonometric Identities proofs
Class 10 Maths Chapter 8 Exercise 8.4 Question 3 and 4 Solutions
Class 10 Maths Chapter 8 Exercise 8.4 Questions answers in Hindi
Class 10 Maths Chapter 8 Exercise 8.4 all question solutions in Hindi medium PDFClass 10 Maths Chapter 8 Exercise 8.4 all question solutions in Hindi medium PDF
NCERT Solutions 10 maths exercise 8.4 in Hindi
NCERT Solutions 10 maths exercise 8.4
10 Maths Chapter 8 Exercise 8.4 Question 1 and 2 in Hindi Medium
Chapter 8 Exercise 8.4 all question solutions in Hindi medium PDF



Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry

Introduction to Trigonometry Class 10 Important Questions Very Short Answer (1 Mark)

Question 1.
If tan θ + cot θ = 5, find the value of tan2θ + cotθ. (2012)
Solution:
tan θ + cot θ = 5 … [Given
tan2θ + cot2θ + 2 tan θ cot θ = 25 … [Squaring both sides
tan2θ + cot2θ + 2 = 25
∴ tan2θ + cot2θ = 23

Question 2.
If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A. (2012, 2017D)
Solution:
sec 2A = cosec (A – 27°)
cosec(90° – 2A) = cosec(A – 27°) …[∵ sec θ = cosec (90° – θ)
90° – 2A = A – 27°
90° + 27° = 2A + A
⇒ 3A = 117°
∴ ∠A = 1173 = 39°

Question 3.
If tan α = 3 and tan β = 13,0 < α, β < 90°, find the value of cot (α + β). (2012)
Solution:
tan α = 3 = tan 60° …(i)
tan β = 13 = tan 30° …(ii)
Solving (i) & (ii), α = 60° and β = 30°
∴ cot (α + β) = cot (60° + 30°) = cot 90° = 0

Question 4.
If sin θ – cos θ = 0, find the value of sin4 θ + cos4 θ. (2012, 2017D)
Solution:
sin θ – cos θ = 0 = sin θ = cos θ
⇒ sinθ = 1 ⇒ tan θ = 1 ⇒ θ = 45°
Now, sin4θ + cos4θ
= sin4 45° + cos4 45°
(12)4+(12)4=14+14=24=12

Question 5.
If sec θ + tan θ = 7, then evaluate sec θ – tan θ. (2017OD)
Solution:
We know that,
sec2θ – tan2θ = 1
(sec θ + tan θ) (sec θ – tan θ) = 1
(7) (sec θ – tan θ) = 1 …[sec θ + tan θ = 7; (Given)
∴ sec θ – tan θ = 17

Question 6.
Evaluate: 10. 1cot245. (2014)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 1

Question 7.
If cosec θ = 54, find the value of cot θ. (2014)
Solution:
We know that, cot2θ = cosec2θ – 1
(54)2 – 1 ⇒ 2516 – 1 ⇒ 251616
coť2θ = 916 i cot θ = 34

Question 8.
If θ = 45°, then what is the value of 2 sec2θ + 3 cosec2θ ? (2014)
Solution:
2 sec2θ + 3 cosec2θ = 2 sec2 45° + 3 cosec2 45°
= 2(2)2 + 3 (2)2 = 4 + 6 = 10

Question 9.
If 3 sin θ = cos θ, find the value of 3cos2θ+2cosθ. (2015)
Solution:
3 sin θ = cos θ … [Given
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 2

Question 10.
Evaluate: sin2 19° + sin771°. (2015)
Solution:
sin2 19° + sin2 71°
= sin219° + sin2 (90° – 19°)…[∵ sin(90° – θ) = cos θ
= sin2 19° + cos2 19° = 1 …[∵ sin2 θ + cos2 θ = 1

Question 11.
What happens to value of cos when increases from 0° to 90°? (2015)
Solution:
cos 0° = 1, cos 90° = 0
When θ increases from 0° to 90°, the value of cos θ decreases from 1 to 0.

Question 12.
If tan θ = ax, find the value of xa2+x2. (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 3

Question 13.
If in a right angled ∆ABC, tan B = 125, then find sin B. (2014)
Solution:
1st method:
tan B = 125 ∴ cot B = 512
cosec2 B = 1 + cot2 B
= 1 + [(512)2/latex]=1+[latex]
144+25144=169144
cosec B = 1312 ∴ sin B = 1213
2nd method:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 4
tan B = 125
tan B = ACBC
Let AC = 12k, BC = 5k
In rt. ∆ACB,
AB2 = AC2 + BC2 …[Pythagoras theorem
AB2 = (12k)2 + (5k)2
AB2 = 144k2 + 25k22 = 169k2
AB = 13k
∴ sin B = ACAB=12k13k=1213

Question 14.
If ∆ABC is right angled at B, what is the value of sin (A + C). (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 5
∠B = 90° …[Given
∠A + ∠B + ∠C = 180° …[Angle sum property of a ∆
∠A + ∠C + 90° = 180°
∠A + ∠C = 90°
∴ sin (A + C) = sin 90° = 1 …(taking sin both side

Introduction to Trigonometry Class 10 Important Questions Short Answer-I (2 Marks)

Question 15.
Evaluate: tan 15° . tan 25° , tan 60° . tan 65° . tan 75° – tan 30°. (2013)
Solution:
tan 15°. tan 25°, tan 60°. tan 65°. tan 75° – tan 30°
= tan(90° – 75°) tan(90° – 65°). 3 . tan 65°. tan 75° – 13
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 6

Question 16.
Express cot 75° + cosec 75° in terms of trigonometric ratios of angles between 0° and 30°. (2013)
Solution:
cot 75° + cosec 75°
= cot(90° – 15°) + cosec(90° – 15°)
= tan 15° + sec 15° …[cot(90°-A) = tan A
cosec(90° – A) = sec A

Question 17.
If cos (A + B) = 0 and sin (A – B) = 3, then find the value of A and B where A and B are acute angles. (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 7
Putting the value of B in (i), we get
⇒ A = 30° + 30° = 60°
∴ A = 60°, B = 30°

Question 18.
If A, B and C are the interior angles of a ∆ABC, show that sin (A+B2) = cos(c2). (2012)
Solution:
In ∆ABC, ∠A + ∠B + ∠C = 180° …(Angle sum property of ∆
∠A + ∠B = 180° – ∠C
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 8

Question 19.
If x = p sec θ + q tan θ and y = p tan θ + q sec θ, then prove that x2 – y2 = p2 – q2. (2014)
Solution:
L.H.S. = x2 – y2
= (p sec θ + q tan θ)2 – (p tan θ + q sec θ)2
= p2 sec θ + q2 tan2 θ + 2 pq sec 2 tan 2 -(p2 tan2 θ + q2 sec2 θ + 2pq sec θ tan θ)
= p2 sec θ + 2 tan2 θ + 2pq sec θ tan θ – p2 tan2 θ – q2 sec θ – 2pq sec θ tan θ
= p2(sec2 θ – tan2 θ) – q2(sec?2 θ – tan2 θ) =
= p2 – q2 …[sec2 θ – tan2 θ = 1
= R.H.S.

Question 20.
Prove the following identity: (2015)
sin3θ+cos3θ = 1 – sin θ . cos θ
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 9

Question 21.
Simplify: 1+tan2A. (2014)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 10
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 11

Question 22.
If x = a cos θ – b sin θ and y = a sin θ + b cos θ, then prove that a2 + b2 = x2 + y2. (2015)
Solution:
R.H.S. = x2 + y2
= (a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
= a2cos2 θ + b2 sin2 θ – 2ab cos θ sin θ + a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ
= a2(cos2 θ + sin2θ) + b2 (sin2 θ + cos2 θ)
= a2 + b2 = L.H.S. …[∵ cos2 θ + sin2 θ = 1

Introduction to Trigonometry Class 10 Important Questions Short Answer – II (3 Marks)

Question 23.
Given 2 cos 3θ = 3, find the value of θ. (2014)
Solution:
2 cos 3θ = 3 …[Given
cos 3θ = 32 ⇒ cos 3θ = cos 30°
30 = 30° ∴ θ = 10°

Question 24.
If cos x = cos 40° . sin 50° + sin 40°. cos 50°, then find the value of x. (2014)
Solution:
cos x = cos 40° sin 50° + sin 40° cos 50°
cos x = cos 40° sin(90° – 40°) + sin 40°.cos(90° – 40°)
cos x = cos2 40° + sin2 40°
cos x = 1 …[∵ cos2 A + sin2 A = 1
cos x = cos 0° ⇒ x = 0°

Question 25.
If sin θ = 12, then show that 3 cos θ – 4 cos3 θ = 0. (2014)
Solution:
sin θ = 12
sin θ = sin 30° ⇒ θ = 30°
L.H.S = 3 cos θ – 4 cos3 θ
= 3 cos 30° – 4 cos3(30°)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 12

Question 26.
If 5 sin θ = 4, prove that 1cosθ+1cotθ = 3 (2013
Solution:
Given: 5 sin θ = 4
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 13

Question 27.
Evaluate: sec 41°. sin 49° + cos 29°.cosec 61° Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 14 (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 15

Question 28.
Evaluate: (2012, 2017D)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 16
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 17

Question 29.
In figure, ∆PQR right angled at Q, PQ = 6 cm and PR = 12 cm. Determine ∠QPR and ∠PRQ. (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 18
Solution:
In rt. ∆PQR,
PQ2 + QR2 = PR2 …[By Pythogoras’ theorem
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 19
(6)2 + QR2 = (12)2
QR2 = 144 – 36
QR2 = 108
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 20

Question 30.
Find the value of: (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 21
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 22
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 23

Question 31.
Prove that: sin263+sin227 + 2 sin 36° sin 42° sec 48° sec 54° (2017OD)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 24

Question 32.
If sin θ = 1213, 0° <0 < 90°, find the value of: sin2θcos2θ2sinθcosθ×1tan2θ (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 25
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 26

Question 33.
Prove that: (2012)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 27
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 28

Question 34.
Prove that: tanθ+secθ1tanθsecθ+1=1+sinθcosθ (2012, 2017D)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 29

Question 35.
If tan θ = ab, prove that asinθbcosθasinθ+bcosθ=a2b2a2+b2 (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 30
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 31

Question 36.
Prove the identity: (sec A – cos A). (cot A + tan A) = tan A . sec A. (2014)
Solution:
L.H.S.= (sec A – cos A) (cot A + tan A)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 32

Question 37.
If sec θ + tan θ = p, prove that sin θ = p21p2+1 (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 33

Question 38.
Prove that: sinθ2sin3θ = tan θ (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 34

Question 39.
Prove that: sinθ1+cosθ+1+cosθsinθ = 2 cosec θ (2017OD)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 35

Introduction to Trigonometry Class 10 Important Questions Long Answer (4 Marks)

Question 40.
In an acute angled triangle ABC, if sin (A + B – C) = 12 and cos (B + C – A) = 12, find ∠A, ∠B and ∠C. (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 36
Putting the values of A and B in (iii), we get
67.5° + B + 75o = 180°
B = 180° – 67.5° – 75o = 37.5°
∴ ∠A = 67.5°, ∠B = 37.5° and ∠C = 75°

Question 41.
Evaluate: (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 37
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 38

Question 42.
Evaluate the following: (2015)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 39
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 40

Question 43.
If θ = 30°, verify the following: (2014)
(i) cos 3θ = 4 cos3 θ – 3 cos θ
(ii) sin 3θ = 3 sin θ – 4 sin3θ
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 41
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 42

Question 44.
If tan (A + B) = 3 and tan (A – B) = 13 where 0 < A + B < 90°, A > B, find A and B. Also calculate: tan A. sin (A + B) + cos A. tan (A – B). (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 43

Question 45.
Find the value of cos 60° geometrically. Hence find cosec 60°. (2012, 2017D)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 44
Let ∆ABC be an equilateral ∆.
Let each side of triangle be 2a.
Since each angle in an equilateral ∆ is 60°
∴ ∠A = ∠B = ∠C = 60°
Draw AD ⊥ BC
In ∆ADB and A∆ADC,
AB = AC … [Each = 2a
AD = AD …[Common
∠1 -∠2 … [Each 90°
∴ ∆ADB = ∆ADC …[RHS congruency rule
BD = DC = 2a2 = a
In rt. ∆ADB, cos 60° = BDAB=a2a=12
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 45

Question 46.
If tan(20° – 3α) = cot(5α – 20°), then find the value of α and hence evaluate: sin α. sec α . tan α – cosec α . cos α . cot α. (2014)
Solution:
tan(20° – 3α) = cot(5α – 20°)
tan(20° – 3α) = tan[90° – (5α – 20°)] …[∵ cot θ = tan(90° – θ)]
∴ 20° – 3α = 90° – 5α + 20°
⇒ -3α + 5α = 90° + 20° – 20°
⇒ 2α = 90° ⇒ α = 45°
Now, sin α . sec α tan α – cosec α . cos α . cot α
= sin 45°. sec 45° tan 45° – cosec 45°. cos 45° cot 45°
12×2×12×12×1=11=0

Question 47.
If xacosθ + ybsinθ = 1 and xasinθ – yb cosθ = 1, prove that event x2a2+y2b2 = 2. (2012, 2017D)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 46
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 47
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 48

Question 48.
If sin θ = cc2+d2 and d > 0, find the values of cos θ and tan θ. (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 49

Question 49.
If cot B = 125, prove that tan2B – sin2B = sin4 B . sec2 B. (2013)
Solution:
cot B = 125 :: ABBC=125
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 50
AB = 12k, BC = 5k
In rt. ∆ABC, …[By Pythagoras’ theorem
AC2 = AB2 + BC2
AC2 = (12k)2 + (5k)2
AC2 = 144k2 + 25k2
AC2 = 169k2
AC = +13k …[∵ Hypotenuse cannot be -ve
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 51

Question 50.
If 3 cot2θ – 4 cot θ + 3 = 0, then find the value of cot2 θ + tan2θ. (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 52

Question 51.
Prove that b2x2 – a2y2 = a2b2, if: (2014)
(i) x = a sec θ, y = b tan θ
(ii) x = a cosec θ, y = b cot θ
Solution:
(i) L.H.S. = b2x2 – a2y2
= b2(a sec θ)2 – a2(b tan θ)2
= b2a2 sec θ – a2b2 tan2θ
= b2a2(sec2 θ – tan2 θ)
= b2a2(1) …[∵ sec2θ – tan2 θ = 1
= a2b2 = R.H.S.

(ii) L.H.S. = b2x2 – a2y2
= b2(a cosec θ)2 – a2(b cot θ)2
= b2a2 cosec2 θ – a2b2 cot2 θ
= b2a2(cosec2θ – cot2 θ)
= b2a2 (1) ..[∵ cosec2 θ – cot2 θ = 1
= a2b2= R.H.S.

Question 52.
If sec θ – tan θ = x, show that sec θ + tan θ = 1x and hence find the values of cos θ and sin θ. (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 53
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 54

Question 53.
If cosec θ + cot θ = p, then prove that cos θ = p21p2+1. (2012)
Solution:
cosec θ + cot θ = p
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 55

Question 54.
If tan θ + sin θ = p; tan θ – sin θ = q; prove that p2 – q2 = 4pq. (2012)
Solution:
L.H.S. = p2 – q2
= (tan θ + sin θ)2 – (tan θ – sin θ)2
= (tan2θ + sin2θ + 2.tanθ.sinθ) – (tan2θ + sin2θ – 2tan θ sin θ)
= 2 tan θ sin θ+ 2 tan θ sin θ
= 4 tan θ sin θ …(i)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 56

Question 55.
If sin θ + cos θ = m and sec θ + cosec θ = n, then prove that n(m2 – 1) = 2m. (2013)
Solution:
m2 – 1 = (sin θ + cos θ)2 – 1
= sin2 θ + cos2θ + 2 sin θ cos θ – 1
= 1 + 2 sin θ cos θ – 1
= 2 sin θ cos θ …[sin2 θ + cos2 θ = 1
L.H.S. = n(m2 – 1)
= (sec θ + cosec θ) 2 sin θ cos θ
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 57

Question 56.
Prove that: Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 58 = 2 cosec A (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 59

Question 57.
In ∆ABC, show that sin2 A2 + sin2 B+C2 = 1. (2013)
Solution:
In ∆ABC, ∠A + ∠B + ∠C = 180° … [Sum of the angles of ∆
∠B + ∠C = 180° – ∠A
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 60

Question 58.
Find the value of: (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 61
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 62

Question 59.
Prove that: (sin θ + cos θ + 1). (sin θ – 1 + cos θ) . sec θ . cosec θ = 2 (2014)
Solution:
L.H.S. = (sin θ + cos θ + 1) (sin θ – 1 + cos θ) . sec θ cosec θ
= [(sin θ + cos θ) + 1] [(sin θ + cos θ) – 1] . sec θ cosec θ
= [(sin θ + cos θ)2 – (1)2] sec θ cosec θ …[∵ (a + b)(a – b) = a2 – b2
= (sin2 θ + cos2θ + 2 sin θ cos θ – 1]. sec θ cosec θ
= (1 + 2 sin θ cos θ – 1). sec θ cosecθ …[∵ sin2θ + cos2θ = 1
= (2 sin θ cos θ). 1cosθ1sinθ
= 2 = R.H.S. …(Hence proved)

Question 60.
Prove that: (2014)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 63
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 64

Question 61.
Prove that: (1 + cot A + tan A). (sin A – cos A) = sec3Acsc3A (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 65

Question 62.
Prove the identity: (2015)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 66
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 67

Question 63.
Prove the following trigonometric identities: sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A. (2015)
Solution:
L.H.S.
= sin A (1 + tan A) + cos A (1 + cot A)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 68

Question 64.
Prove that: (cot A + sec B)2 – (tan B – cosec A)2 = 2(cot A . sec B + tan B. cosec A) (2014)
Solution:
L.H.S.
= (cot A + sec B)2 – (tan B – cosec A)2
= cot2 A + sec2 B + 2 cot A sec B – (tan2 B + cosec2 A – 2 tan B cosec A)
= cot2 A + sec2 B + 2 cot A sec B – tan2 B – cosec2 A + 2 tan B cosec A
= (sec2 B – tan2 B) – (cosec2 A – cot2 A) + 2(cot A sec B + tan B cosec A)
= 1 – 1 + 2(cot A sec B + tan B cosec A) … [∵ sec2B – tan2 B = 1
cosec2A – cot2 A = 1
= 2(cot A . sec B + tan B . cosec A) = R.H.S.

Question 65.
If x = r sin A cos C, y = r sin A sin C and z = r cos A, then prove that x2 + y2 + z2 = r2. (2017OD)
Solution:
x = r sin A cos C; y = r sin A sin C; z = r cos A
Squaring and adding,
L.H.S. x2 + y2 + z2 = 2 sin2 A cos2C + r2 sin2 A sin2 C + r2 cos2 A
= r2 sin2 A(cos2 C + sin2 C) + r2 cos2 A
= r2 sin2 A + r2 cos2 A … [cos2θ + sin2θ = 1
= r2 (sin2 A + cos2 A) = r2 = R.H.S.

Question 66.
Prove that: (2017OD)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 69
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 70

Question 67.
In the adjoining figure, ABCD is a rectanlge with breadth BC = 7 cm and ∠CAB = 30°. Find the length of side AB of the rectangle and length of diagonal AC. If the ∠CAB = 60°, then what is the size of the side AB of the rectangle. [Use 3 = 1.73 and 2 = 1.41, if required) (2014OD)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 71
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 72



Class 10 Maths Notes Chapter 8 Introduction to Trigonometry

  • Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).
  • Trigonometry is the science of relationships between the sides and angles of a right-angled triangle.
  • Trigonometric Ratios: Ratios of sides of right triangle are called trigonometric ratios.
    Consider triangle ABC right-angled at B. These ratios are always defined with respect to acute angle ‘A’ or angle ‘C.
  • If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
  • How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the ‘θ’ being considered.

Let us look at both cases:
Introduction to Trigonometry Class 10 Notes Maths Chapter 8 Q1.1
In a right triangle ABC, right-angled at B. Once we have identified the sides, we can define six t-Ratios with respect to the sides.

case Icase II
(i) sine A = perpendicularhypotenuse=BCAC(i) sine C = perpendicularhypotenuse=ABAC
(ii) cosine A = basehypotenuse=ABAC(ii) cosine C = basehypotenuse=BCAC
(iii) tangent A = perpendicularbase=BCAB(iii) tangent C = perpendicularbase=ABBC
(iv) cosecant A = hypotenuseperpendicular=ACBC(iv) cosecant C = hypotenuseperpendicular=ACAB
(v) secant A = hypotenusebase=ACAB(v) secant C = hypotenusebase=ACBC
(v) cotangent A = baseperpendicular=ABBC(v) cotangent C = baseperpendicular=BCAB

Note from above six relationships:

cosecant A = 1sinA, secant A = 1cosineA, cotangent A = 1tanA,

However, it is very tedious to write full forms of t-ratios, therefore the abbreviated notations are:
sine A is sin A
cosine A is cos A
tangent A is tan A
cosecant A is cosec A
secant A is sec A
cotangent A is cot A

TRIGONOMETRIC IDENTITIES

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:
tan θ = sinθcosθ
cot θ = cosθsinθ

  • sin² θ + cos² θ = 1 ⇒ sin² θ = 1 – cos² θ ⇒ cos² θ = 1 – sin² θ
  • cosec² θ – cot² θ = 1 ⇒ cosec² θ = 1 + cot² θ ⇒ cot² θ = cosec² θ – 1
  • sec² θ – tan² θ = 1 ⇒ sec² θ = 1 + tan² θ ⇒ tan² θ = sec² θ – 1
  • sin θ cosec θ = 1 ⇒ cos θ sec θ = 1 ⇒ tan θ cot θ = 1

ALERT:
A t-ratio only depends upon the angle ‘θ’ and stays the same for same angle of different sized right triangles.
Introduction to Trigonometry Class 10 Notes Maths Chapter 8 Q1.2
Value of t-ratios of specified angles:

∠A30°45°60°90°
sin A01212321
cos A13212120
tan A0131√3not defined
cosec Anot defined2√2231
sec A123√22not defined
cot Anot defined√31130

The value of sin θ and cos θ can never exceed 1 (one) as opposite side is 1. Adjacent side can never be greater than hypotenuse since hypotenuse is the longest side in a right-angled ∆.

‘t-RATIOS’ OF COMPLEMENTARY ANGLES
Introduction to Trigonometry Class 10 Notes Maths Chapter 8 Q1.3
If ∆ABC is a right-angled triangle, right-angled at B, then
∠A + ∠C = 90° [∵ ∠A + ∠B + ∠C = 180° angle-sum-property]
or ∠C = (90° – ∠A)

Thus, ∠A and ∠C are known as complementary angles and are related by the following relationships:
sin (90° -A) = cos A; cosec (90° – A) = sec A
cos (90° – A) = sin A; sec (90° – A) = cosec A
tan (90° – A) = cot A; cot (90° – A) = tan A


Here Is The Class 10 Maths All NCERT Solutions In Hindi + English With Extra Questions, Notes And Important Questions


Post a Comment

0 Comments